Department of Economics “I @ URniveZSIi.ty of
u eading

Group for Economic Analysis at Reading (GEAR)
GEAI

Dynamic Quantile Panel Data Models
with Interactive Effects

by Jia Chen, Yongcheol Shin and Chaowen Zheng

Discussion Paper No. 2023-06

Department of Economics
University of Reading
Whiteknights

Reading

RG6 6AA

United Kingdom

www.reading.ac.uk

© Department of Economics, University of Reading 2023


https://research.reading.ac.uk/economics/group-for-economic-analysis-at-reading-gear/

Dynamic Quantile Panel Data Models with Interactive Effects®

Jia Chenf Yongcheol Shin * Chaowen Zheng $

This Version: June 2023

Abstract

We propose a simple two-step procedure for estimating the dynamic quantile panel data
model with unobserved interactive effects. To account for the endogeneity induced by correlation
between factors and lagged dependent variable/regressors, we first estimate factors consistently
via an iterative principal component analysis. In the second step, we run a quantile regression for
the augmented model with estimated factors and estimate the slope parameters. In particular,
we adopt a smoothed quantile regression analysis where the quantile loss function is smoothed to
have well-defined derivatives. The proposed two-step estimator is consistent and asymptotically
normally distributed, but subject to asymptotic bias due to the incidental parameters. We then
apply the split-panel jackknife approach to correct the bias. Monte Carlo simulations confirm
that our proposed estimator has good finite sample performance. Finally, we demonstrate the
usefulness of our proposed approach with an application to the analysis of bilateral trade for

380 country pairs over 59 years.
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1 Introduction

Over the past two decades panel data models with interactive effects have been rapidly developed
in order to explicitly model pervasive cross-section dependence (CSD) well-documented in the
literature (e.g., Pesaran (2015); Mastromarco et al. (2016)). Significant progress has been made in
both estimation and inference for the linear model (e.g. Pesaran (2006), Bai (2009)), the non-linear
model (e.g. Chen et al. (2021c¢)), the dynamic model (e.g. Moon and Weidner (2017)), and non-
parametric models (e.g. Dong et al. (2021)). See Bai and Wang (2016) and Sarafidis and Wansbeek
(2021) for excellent reviews.

Fundamentally, economic relationships are dynamic and thus involve dynamic adjustments due
to habit persistence, inertia, sunk cost and so on. For example, a number of empirical studies have
been conducted in labour economics (Meghir and Pistaferri (2004)), economic growth (Acemoglu
et al. (2008)) and international economics (Keller (2004)). Simultaneously, dynamic panel data
models have been developed theoretically (e.g. Chudik and Pesaran (2015), Moon and Weidner
(2017)) and widely applied empirically (Eberhardt and Presbitero (2015), Temple and Van de Sijpe
(2017)).

Most of existing studies in the dynamic panel data literature focus on estimating the mean
effects, although there are many situations where we would like to investigate heterogeneous ef-
fects across the (conditional) distribution of variables of interest. For example, policy makers are
interested in not only the policy effects at the mean, but also its effects across different quantiles.
Moreover, we observe that several economic time series tend to display asymmetric dynamics in
which case we need to incorporate such behavior in the modelling strategy to avoid misleading
estimation or inference (e.g. Koenker and Xiao (2006)).

Since the seminar paper by Koenker and Bassett Jr (1978), a quantile regression has become a
standard approach to modelling distributional effects. Koenker (2004) also introduces the quantile
regression approach to the panel data. In the panel quantile regression with individual effects
Kato et al. (2012) point out that we need to impose more restrictive conditions to establish v/ NT-
consistency and the asymptotic normality of the corresponding estimator than those in nonlinear
models with a smooth objective function. Galvao and Montes-Rojas (2010) and Galvao (2011)
develop a dynamic quantile panel data model with individual effects and suggest the instrumental
variable approach to dealing with the Nickel bias (Nickell (1981)). Harding and Lamarche (2014)
extend the model by introducing interactive effects to capture CSD and propose the use of the
common correlated common effects (CCE) estimator by Pesaran (2006). See also further extensions
by Ando and Bai (2020) and Chen et al. (2021b), which allow the common factors to be quantile-
dependent.

In particular, Harding et al. (2020) consider the dynamic quantile panel data models with
unobserved common factors. Assuming that the dependent variable and regressors share the same
common factors, they propose the CCE approach, where unobserved factors are proxied by cross
section averages of the dependent and independent variables (and their time lags) for consistent
estimation. Under the stringent condition (e.g. NZ?(log N)/T — 0), they can establish v/ NT-



consistency and asymptotic normality of the quantile estimator. However, it is restrictive to assume
that the dependent variable and regressors share the exactly same factors while the use of the cross-
section average of the dependent variable as a factor proxy could introduce the small-sample bias,
see Chen et al. (2021a). Moreover, there is no formal procedure for selecting the optimal lag order
for better factor approximation. For example, Chudik and Pesaran (2015) argue that the optimal
lag order could be selected differently for the coefficient on the lagged dependent variable and
coefficients on the regressors, which will induces further estimation uncertainty.

In this paper, we develop a simple two-step estimation procedure for dynamic quantile panel data
models withe interactive effects (IE). In the first step, we follow Bai (2009) and Moon and Weidner
(2017) and estimate unobserved factors consistently by using the iterative principle component
(IPC) method. In the second step, we construct an augmented model with estimated factors and
run a smoothed quantile regression (see Galvao and Kato (2016)) to consistently estimate the main
parameters.

Our approach is more general than the CCE approach advanced by Harding et al. (2020) as
follows: First, our approach does not require any data generating process for the regressors and
thus is free from imposing the assumption on the relation between the number of regressors and the
number of factors (i.e., the rank condition in the CCE literature). In this regard, we allow arbitrary

correlation between regressors and factors/loadings.!

Second, we don’t need to select any tuning
parameters (e.g., the number of time lags for factor approximation in the CCE approach) and thus
avoid any induced estimation uncertainty. Third, by employing a smoothed quantile regression
approach, we are able to develop the asymptotic theory without imposing any stringent conditions.
Chen (2021) also develops a two-step procedure for the estimation of a static panel data model
with IE. But, he still maintains the assumption that the dependent variable and regressors share
the same factors. Moreover, unlike Chen (2021), we consider dynamics explicitly, which brings new
technical challenges.

We establish that the proposed two-step estimator is v/ NT-consistent and follows the limiting
normal distribution, though it is subject to asymptotic biases arising from the estimation of the
factors and loadings. This incidental parameter problem has been widely documented in nonlinear
panel data models, see Hahn and Kuersteiner (2011) and Chen et al. (2021c). We also find that
the classic Nickell bias (Nickell (1981)) exists in dynamic quantile models. To correct these biases,
we propose the use of the spilt panel jackknife (SPJ) method and derive that the bias-corrected
estimator follows a centered normal distribution asymptotically.

Via Monte Carlo simulations, we show that the finite sample performance of the proposed
two-step estimator is quite satisfactory under various experiments with different sample sizes, id-
iosyncratic error distributions and quantile levels. In particular, the two-step estimator displays
smaller (almost negligible) bias and RMSE than those of alternative existing estimators. Further,

the size of t-test is close to the nominal level in almost all cases while its power tends to 1 with

!Though we need to consistently estimate the number of factors in the principle component analysis, such a
theory is rather well-developed, see Bai and Ng (2002), Ahn and Horenstein (2013).



both N and T

Finally, we demonstrate the usefulness of our proposed approach with an application to the
analysis of bilateral trade flows data for 380 country pairs of 14 European Union (EU) and 6 OECD
countries over the period 1960-2018 (59 years). In particular, we aim to examine the benefits of
European Economic Community (EEC) membership on trade and the potential impact of Brexit
on the UK economy. We find that the benefits of an EEC membership can be significantly larger
during recession while its long run effect ranges from 27.4% at upper quantiles to 118.7% at lower
quantiles, covering most estimated effects documented in the literature. For a comparison we also
estimate the impacts of EEC membership using a static IE model by Chen (2021) and the CCE
estimation by Harding et al. (2020), and find that those results are less sensible and occasionally
difficult to interpret economically. This may highlight the importance of controlling dynamics and
pervasive CSD appropriately in the analysis of the trade dataset.

The rest of the paper is organised as follows. Section 2 describes the model and the two-
step estimation procedure. Section 3 establishes the asymptotic theory under gives the maintained
assumptions. Section 4 presents the finite sample performance of the proposed estimator via Monte
Carlo simulations. Section 5 provides an empirical application to uni-directional bilateral trade flows
for 380 country pairs of 14 EU and 6 OECD countries. Section 6 concludes. The mathematical
proofs are relegated to the Appendix A while additional Lemmas and Monte Carlo simulation

results are presented in Appendices S1 and S2.

2 The Model and the Estimator

Consider the following random coefficient panel data model with unobserved common factors:

it = Yo(wit)yit—1 + Bo(wit) Tit + vio(wit) fro
= 0o (uit) zit + Yio(uit)' fro (1)

where y;; is the dependent variable of the i-th individual at time ¢, y;;—1 is the lagged value of
yit with the corresponding autoregressive coefficient, ¢o(uit), i = (i1, ..., xit,p)l isapxl1
vector of independent variables including the constant with By(u;) being the corresponding vector
of homogeneous parameters, fio is an r x 1 vector of common factors with factor loadings, ;o (),
and w; ~ 1.i.d.U[0, 1] is assumed to be independent of all the other variables in the model. We also
denote Oy(uit) = (o(uit), Bo(ui)'), and zi = (yir—1, ;).

As a common practice in the quantile regression literature, we assume that the co-monotonicity
condition for 6y(-) holds to avoid quantile crossing (see Koenker (2005)). Then, we have the 7-th

quantile representation for (1) as follows:
Yir = 00(7) zit + Yio(7)' fro + prae (1) with Pluir(7) < 0|zit, fro] = 7. (2)

We aim to estimate 0y(7) = (¢o(7), Bo(7)’)’. In what follows, we will drop the dependence on 7



such that 0y (7) = 0y and ~;o(7) = o for simplicity.
If the factors, fio, are observed, then a natural approach is to estimate the nuisance parameters,

~io together with the main parameters, 8y by minimising the following objective function:

N T

(O A AR = rgmin 525 gl = 02— fo) (3)
where ® and A are real compact sets and p, () = p[r — L(p < 0)] is the check function. Due to
the non-smoothness of the indicator function, it would be more difficult to derive the asymptotic
normality of the estimators than establishing their consistency (Galvao (2011)), as most techniques
developed in the literature for linear/nonlinear and static/dynamic panel data models crucially
rely upon the smoothness of the objective function, (see Hahn and Newey (2004) and Hahn and
Kuersteiner (2011)).

To tackle the above issue, Galvao and Kato (2016) propose smoothing the objetive function for
quantile regression by replacing the indicator function with a kernel function following the work
by Horowitz (1998), and derive the asymptotic distribution of the estimators for quantile panel
data models with fixed effects under regularity conditions. In this paper, we adopt this smoothing

approach and propose estimating the model (2) by minimising the smoothed objective function:

T
Y NV 1 yit — 0'zit — v, fro / /
(6,91, -,9y) = argmin FTZZ[T—K( h N(it — 0'zie — i fro), (4)

where K (z) = 1— [*, k(z)dz, k(-) is a symmetric continuous kernel function with bounded support
[-1, 1], and A is a bandwidth parameter. By rendering k(-) to be smooth up to certain orders,
we can show that the estimator obtained by (4) is asymptotically equivalent to that obtained by
(3). More importantly, the smoothed objective function enables us to establish the asymptotic
distribution of the estimator using the well-developed techniques (e.g. Chen et al. (2021c)).

In practice, however, minimisation in (3) or (4) is not directly feasible because the factors fio
are unobserved. In the dynamic quantile panel data model with unobserved common factors, Hard-
ing et al. (2020) propose the CCE approach, where unobserved factors are proxied by cross section
averages of the dependent and independent variables (and their time lags) for consistent estima-
tion.> This approach requires the crucial assumption that the dependent variable and regressors
share the same common factors, though it is restrictive and untenable in practice. Moreover, the
correlation between regressors and factor loadings is not allowed in the CCE approach. In general
this implies that the CCE estimation could suffer from endogeneity and/or an efficiency loss due to
the correlation between any remaining unapproximated factors and the lagged dependent variable.

In this paper, we propose a different approach to estimating fig by applying the iterative
3

principal component (IPC) directly to the model (1).* We then plug-in the estimated factors f;

2Under the same assumption, Chen (2021) develops an estimator using the principal component (PC) method
for a quantile panel data model.

3We assume that the number of factors is known, as its consistent selection has been well developed in the



into (4) and estimate the main parameters by minimising the following objective function:*

N T r

o . 1 yit — 0'zie — v f ;

(O Ao A) = argmin o30Sl = KU g~ 0z —if). (9
i i=1 t=1

To better illustrate the idea behind the proposed two-step estimation procedure, we consider

the following location and scale shift panel data model with one unobserved factor:
yit = 05" zit + 715 fro + (1 + 03 zi + 7% fuo)eat, (6)

where the superscript, m is used for the parameters of covariates that cause location (mean) shifts of
the dependent variable, and ¢ for the parameters that cause shifts in scale/shape of the dependent
variable. The idiosyncratic error ¢;; is assumed to be 7.7.d. with zero-mean, and independent of all
other terms. We require (1 + 08/ zit + i f0) > 0, in order to satisfy the co-monotonicity condition

to avoid quantile crossing. Then, we have the following 7th quantile representation of (6):
yir = 00(T)zit + vio(7) fro + pie (1), (7)

where 0(7) = 00+ 6]Q.(7) and similarly for v;o(7), with Q.(7) being the Tth quantile of €;;. Notice
that (7) is of the same form as (2), where the parameters are allowed to be quantile dependent.

We can also rewrite (6) as
yit = 00" zi +¥i0 fro + €t (8)

where e; = (1 + OS/ZZ-t + v fro)eir = pae(T) + (Bo(T) — 05") zit + (vio(T) — ) fro. Since € is
assumed to be i.i.d., e;; is both cross sectionally and serially uncorrelated. Thus, (6) or (8) can
be seen as the quantile extension of the dynamic panel data model with interactive effects studied
by Moon and Weidner (2017). This suggests that all the parameters including both unobserved
factors and loadings can be estimated consistently by the IPC.

In general, we can rewrite the model (1) as

yit = B[00 (uir)]' zit + Elvio(wit)] fro + [O0(wit) — E[0o(wir)]' zie + [vio(wir) — Elvio(uir)] fro
= 06”'zz~t + ’Y%Llfto + eit, (9)

where 05" = E[0o (uit)], iy = E[vio(uir)] and e = [0 (wir) —E[0o(wir)] zit + [vio (wit) — E[vio (wit )] fro-
Then, (9) has exactly the same representation as (8). By assuming w; to be 7.i.d.U[0,1] and

distributed independently of z;; and fio, the e;; will be cross-sectionally and serially uncorrelated.

literature, see Bai and Ng (2002), Ahn and Horenstein (2013). Moreover, as is a common practice in the factor
model literature, we maintain the standard normalization conditions needed for the identification of factor and factor
loadings (e.g. Bai (2009)). As a result, the factors are estimated up to some rotation.

*“We may also follow the recent studies by Chen et al. (2021b) and Ando and Bai (2020), and jointly estimate

the factors and (0’,41,...,%y) at each quantile in an iterative manner. However, this would bring more technical
complexities in the dynamic case. We leave this topic for a future study.



Hence, the IPC and the corresponding asymptotic theories in Moon and Weidner (2017) can be

applied to estimating f;p, though we need to impose some additional regularity conditions on e;;.

3 Asymptotic Theory

3.1 Consistency
To derive the consistency of the quantile estimator, we impose the following assumptions:
Assumption 1. Let M be a generic, finite positive constant.

(i) The random process {zit, fio}72, is a—mizing and the mizing coefficient a;(j) satisfies

sup Y52 a;(§)/ 0T < oo, for some 6 > 0

(ii) Let Xy = (21, flo)', then E|| Xu||*° < M for § defined (i) and all i,t > 1. Moreover, as
T — oo, % Zle fofl 2 S where Sp is anr x r positive definite matriz.

(iit) The Factor loadings for the mean regression (9) satisfy ||viy|| < M for all i, and as N — oo,

N / .. . .
% Yo Yol converges to an r x 1 positive definite matriz X, .

(iv) The error terms pi defined in (2) are cross sectionally and serially independent conditional
on X;i. The error terms e; defined in (9) are cross sectionally and serially uncorrelated and
satisfy E(eir) = 0 and Eley|® < M uniformly in i,t > 1. Moreover, ey is uncorrelated with
X5 for all s < t, and N~1/2 E?Ll[eiseit — E(eiseqit)] is sub-Gaussian for all s,t > 1.

(v) For any given quantile, the parameters 0y and v are interior points of real compact sets ©

and A, respectively.

(vi) Let git(-) and gi(-| Xit) denote the unconditional and conditional density of pi given Xy, and
pit the smallest eigenvalue of E[g; (0| X)X X/,], then there exists s > 0 such that py > 3
for all 1,t.

(vii) N/T? — 0 as N,T — oo and the bandwidth in (/) satisfies h — 0.

The mixing condition in Assumption 1(i) is standard in the nonlinear panel data literature (e.g.,
Fernandez-Val and Weidner (2016)). It places restrictions on the temporal dependence of z;; and
fio, enabling us to apply moment inequalities developed in the literature, see Hahn and Kuersteiner
(2011) and Chen (2021). Assumptions 1(ii)—(iv) are standard for deriving consistent IPC estimator
of factors (up to a rotation). As in Moon and Weidner (2017), we exclude serial correlation in
both p;; and e;; in Assumption 1(iv) since we now study a dynamic model. Cross-sectional corre-
lation is also excluded for simplicity. We impose a sub-Gaussian condition for establishing uniform
consistency of factor estimation. In contrast to the classic quantile regression, we need to impose

the moment restrictions on e; (and j;),” which exclude some heavy tailed distributions such as

50ur procedure is shown to be robust to various idiosyncratic error distributions, including the Normal, t and x?
distributions, see Monte Carlo simulation evidence in Section 4.



the Cauchy distribution, since we employ the IPC to estimate unobserved factors in the first step.
Similar assumptions are imposed by Harding et al. (2020) and Chen (2021).° Assumption 1(v)
is a standard condition in the M-estimation literature for establishing consistency (e.g., Newey
and McFadden (1994)). Assumption 1(vi) is a standard identification condition in the quantile
regression (e.g., Assumption A4 of Galvao and Kato (2016)). The restriction on the bandwidth
in Assumption 1(vii) is used to restrict the estimation error obtained from the smoothed quantile
regression instead of the original unsmoothed one. The required relative size of N over T is imposed
here for technical purposes but easily satisfied.

We now establish the consistency of the quantile estimator of 8y in Theorem 1.

Theorem 1. Under Assumption 1, the quantile estimator é, defined in (5), is consistent for 0y ,
e., |0 — 60| = 0,(1) as N, T — cc.

Remark 1. In Lemma 2 in the Appendix S1, we establish the consistency of the estimated factor
loadings, 4; up to a rotation matrix as in the mean case (e.g., Bai (2003)). One important impli-
cation is that although the estimation of 8y relies upon consistent estimation of unobserved factors
via the IPC in the first step, the corresponding estimation error is asymptotically negligible and

does not affect the consistency of 6.

3.2 Asymptotic Distribution
To derive the asymptotic distribution of the estimators, we add the following assumptions.
Assumption 2. (i) Xy is uniformly bounded in probability for all i,t > 1.

(it) Letting q be an integer satisfying q > 8, gn( ) and git(u| X)) have up to (q + 2)-th order
derivatives. Denote gl(t)( )= dg; t( )/8uj g (u]XZt) M gir(u| X)) /O forj=1,...,q+
2. Then, for each 1 < j < q+2, ]gzt (u)| and ]gl (u\th)\ are uniformly bounded for all i,t.

(iii) f_ll k(u)du = 1,f_11 k(u)uidu = 0 for j =1,...,q— 1 and f_ll k(u)uldu # 0, where q was
defined in Assumption 2(ii).

(iv) \/N/T — 7 >0 as N,T — oo, and h <T~¢, where 1/q < ¢ < 1/6.

(v) Let
T 1 I
EiT = Z ng 0|Xzf)zvfft0 H’LT - ZE git O|X1f ftOftO} q’iT = EzTH:Tla (10)
(p+1)xr =1 t:l (p+1)xr
T
wy = zi — Pir fro, ANy = Z D Elgi (0| X )wisw),], (11)
(p+1)x1 (p+1)X(P+1) 1:1 =1
N N
1 I‘m ry 1
SN = Ay (=2 Yl 2, Dyt =+ i (12)
(P+1)x(p+1) AT ; fz:; 0z (P+1)x(p+1) - NT z::

5Chen (2021) imposes moment restrictions on idiosyncratic errors for regressors instead of the dependent variable.



where

N N
1 N r'rm _
Ay = *ZE[git(mXit)with{o, Zi = Mgz — ZMFOZJ%O ( ON )N,
(p+1)xr i1 Tx(p+1) j 1
1—‘81 = (717?8)7%3"'77}/\70)/) MFO :IT_FO(FOIFO)_IF(Sv FO :(.flﬂa.f?O?"'afTO),'
NXxr TXT Txr

Then, ;7 is positive definite for alli andT' > 1, and the probability limit ® = plimy p_, o PNT
exists. Moreover, the limits Ay = limy_,00 Aty (for each t), A = limy 700 AN, and

D =limy 7100 Dn7 exist, and A and D are positive definite matrices.

Assumptions 2(ii)—(iii) impose restrictions on the smoothness of the density function of p;; and
on the kernel function k(u). They are similar to Assumptions A5-A7 in Galvao and Kato (2016),
except that we need an eighth order kernel due to the presence of the common factors, fio instead
of a fourth order kernel. Assumption 2(v) is analogous to the standard rank condition in quantile
regression, which guarantees that the variance of the estimator is well-defined.

Let wj ;. be the k-th element of w;; and ®;;, be the k-th row of ®;7, 1 <k < p+ 1. Then, we

Ixr
define:

N
1
W= — E Egzt (0| Xt )wit i fro fio) ‘I’th*g E[gg)(O\Xit)wit,k]%o%{o,
t 1 rxr o N i=1

Ou = Zgn Pviolik, 1<k<p+l (13)

We now establish the asymptotic distribution of 6 in Theorem 2.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Then, as N,T — oo, we have:
VNT(0 — 6)) -5 N(A™{D7 ' [r(a1 +as) + 7 'ag] + 7b+7 e}, AT'VA™Y,  (14)

where b=1b1 + by +b3, c=c1+c2, aj =a1;,...,ap415],7 =1,2,3, and

N T T
ag,1 = Nljl“m NT ZZZ E th kft()z stezs)]
e i=1 t=1 s<t
N T
1 (zik — Zi) Fo 2
= 1 _— m ]E 3
k.2 leﬂoo NT ;; T ErEr,.vio (Elei)”),
1 N
ags = lm o Zzt K Mp, QFXrXr,, Yio,
k=1 1, wh CE T ) Lyma )z = (2 rx), =LV Q;
fOT =1,...,p + wnere Zz k=N Z ( N ) 7j0zz,k7 Zik = (Zzl,lm .. -aZzT,k:) 3 = N Zizl i



Q, = d’Lag(]E(ezzl)v cee vE(eZZT))P and

by = —(r - 05) [l o thng 8it (01 X i1 )wit £, 117! Fol
N T T

by = N}Tifgm NT 2;21[‘: it (01 Xt )wie F1oT7 Foo (T — L(pis < 0))],

7 s< (1 ) N
by = [brs,... bpp1s)  with byg = — 5 m ZZE[f{OH;TllIlikH;Tlfto], k=1,...,p+1,

1 N 7,:1 t=1
€1 =— N}Tifgoo NT ;; YioZr . Yio Elgi (01 Xir)cit (7) zit] + @ir B Yo Elpwie(t — 1(pae < 0))]),

11 A
co=[c19,...,Cpr12)  with cpo = olim S~ Z;;E 2V B (W, +200) S0 v, 1<k <p+1,
1 L S 1 LETE

V= NlTHEoo NT Z Z]E[vitvit} with v;; = ®D ™" Z,e + (7 — L(pir < 0))wie — Ayn( N )" YIG €ty

i=1 t=1
where Z;; s the t-th row of z;.

Remark 2. From (14), we observe that the quantile estimator, 6 suffers from asymptotic biases.
The bias term b (c¢) arises mainly from the estimation of factor loadings (factors). The convergence
rates for the estimated factors (time effects) and factor loadings (individual effects) are v/ N and
VT, respectively, with the leading bias terms of orders 1/N and/or 1/T (e.g., Theorems 1 and 2
in Bai (2003)). These rates are slower than that of the main parameters, which is vV NT. As a
result, the biases of estimated factors and loadings do not affect consistency of 0 as N, T — oo,
but they do not disappear after the multiplication of v/NT. This leads to asymptotic biases of
orders \/T/N or \/N/T. Moreover, the bias term by can be seen as an extension of the Nickell
Bias (Nickell (1981)), which arises from the lagged dependent regressor, y;;—1. Without y; ;1 in

the model, by is zero since w;; is no longer correlated with p;s (s < t) under our assumptions.

Remark 3. Since factors and parameters (" are estimated iteratively in the first step, our quantile
estimator is subject to an additional bias. As shown in the proof of Theorem 2 in Appendix A,
the expansion of 6 — 0, consists of the term, a = ANlTﬁI) NT\/W(BS” — ém), which arises from
the factor estimation error (see Lemma 8). While this term can be absorbed in the conditional
mean regression (see Proposition A.2 in Bai (2009)), 67" — 6™ is generally different from its quantile
counterpart — 6y (albeit the same convergence rate) and thus it cannot be absorbed in the quantile
regression. The a1, as and ag are the corresponding asymptotic bias terms relating to (67" — ém),
see Theorem 4.3 in Moon and Weidner (2017).

Remark 4. In the special case where f;o is observed (see Xu et al. (2021)), the asymptotic results
can be greatly simplified, since all the bias terms related to factor estimation will disappear. Then,

we have:

VNTI[6 — 6p] & N(r A~ (by + by + b3), AT'VA™),

10



where V = 7(1 — 7) limy. 7 00 7 Zf\il Zthl Elw;;w},]. In this case, the quantile estimator only

suffers from asymptotic bias arising from estimating individual effects (see Galvao and Kato (2016)).

To estimate the asymptotic variance of the quantile estimator, we first estimate v;; as

PRy, R ™ m
Vi = PD ™ Z,60 + (7 — L < 0))wir — An( N

)_1'5’;‘7%#,

where 4" and é;; are the estimated factor loadings and residuals obtained from the first step IPC
estimation, Z; and D are constructed using factors and loadings estimated in the first step, and
;¢ is the regression residual at the given 7-th quantile. Since the estimation of the other quantities
are more involved, we follow Galvao and Kato (2016) and propose the following estimators:

T T
N oA _1a o 1 . p - 1 N7 2
Wi =z — B Q7 i with B = =Y Ky(fu)zaf] and Q= = Ko(fa) f1],

where /Cy(f15¢) is the kernel estimator for the probability density of the regression residual around 0
with Ky (-) = K(-/h)/h, K(-) is a kernel function and b is a bandwidth.” Based on these estimates,

we construct an estimate of A as

1
NT 4

)

A= Z ICo (fuie) wip s,

N
=1 t=1

Then, we estimate the variance of 8 — 6 as

V- A—lﬁ SOS buol AL (15)

3.3 Bias Correction

Theorem 2 implies that the asymptotic distribution of 6 is not centered. Such biases in finite
samples can be substantial if T or N is not sufficiently large. To get rid of the bias, we have
two options: the analytical bias correction by Hahn and Kuersteiner (2011) and the Split Panel
Jackknife (SPJ hereafter) by Dhaene and Jochmans (2015). While both approaches can be shown
to remove the asymptotic bias effectively, SPJ enjoys a main advantage such that it is easy to
implement and more effective when the sample size is small (as the estimation of asymptotic bias
in the analytical bias correction can be rather imprecise in small samples).

We therefore propose using SPJ to correct the bias of the quantile estimator. Define the subpanel

"The kernel function and bandwidth are not necessarily the same as those used for parameter estimation in (4).
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index sets by

Ti={l...,(T+1)/2]}, To={T/2]+1,...,T}
No={1,.... [((N+1)/2]}, No={|N/2]+1,...,N},

where |-| takes an integer part of any number. Also denote 7o = 71 U T2 and Ny = N7 U Na. For
any given quantile level, 7, let é(j s) be the estimator of 8y, defined in (4), obtained using the sample
data, {(yit,xit) : @ € Nj,t € Tg}, where j,s = 0,1,2. Then, the SPJ bias-corrected estimator is
given by

1 . .

. . 1 . .
Oy = 3600y — 5[9(01) +0(02)] — 5[9(10) + 0(20)]- (16)

To derive its asymptotic property, we follow Fernandez-Val and Weidner (2016) and impose an

unconditional homogeneity condition.

Assumption 3. The sequence, {Yit, Tit, Vi, fr0,1 < t < T,1 < i < N} is identically distributed

across i and strictly stationary across t, for each N, T .

Theorem 3. Under Assumptions 1-3 and as N, T — oo, then

VNT 0y — 60) -5 N(0, A"'VA)). (17)

4 Monte Carlo Simulation

4.1 The Simulation Design

We investigate the finite sample performance of the proposed two-step quantile estimator. We

generate the data by

Yit = (0.5 + O.2u,-t)y¢,t_1 + (1 + O-QUit)fUit,l + (2 + 0.2uit)xit,2
4 (y1: 4+ 0.2uit) fre 4 (i + 0.2uit) for + F 1 (usy) (18)
Tiek = Diapfre + Toinfae +viek, k=12, (19)

for i = 1,...,N and t = —49,-48,..., T, where uy is generated from 4.i.d.U[0,1] and F~1(.)
is the inverse of the cumulative distribution function. To check the robustness of the proposed
estimator, we consider the different distributions of idiosyncratic errors such as N(0,1), ¢(4) and
X2<3) distributions. We set the number of unobserved factors in both equations for y;; and x;; at 2,
but allow x; to be influenced by a different factor f3,. All the factors are generated by an AR(1)
process:

frt =g fric1 +&5,, 1=1,2,3; t = —49,-48,...,T,°

8We discard the first 50 observations as a burn-in sample.

9The first 50 observations are discarded as a burn-in sample.

12



with ¢y, = 0.5 and &5, ~ i.i.d.N(0,1 — qb?cr). The loadings are generated as i.i.d.N(0.5,0.5). We

allow v;; to be serially correlated via the following AR (1) process:
Vitk = GuVip—1k + vy K =1,2; i =1,2,... . N; t = —49,-48,....T,

where ¢, = 0.5, and &,,, ~ @.i.d.N(0,1— ¢2 ).
In addition to our proposed two-step estimator in (5) and its bias-corrected estimator in (16),

we also consider alternative estimators for comparison. These estimators are listed below:'’

1. T'S: Our proposed two-step estimator, where we apply the IPC to (18) and obtain consistent
estimates of factors ft,t = 1,2,...,T in the first step.'' In the second step, we plug in
the estimated factors and run the smoothed quantile regression in (5) to estimate the main
parameters. In the smoothed quantile regression, we use the kernel function (see also Muller
et al. (1984)):

4
k(z) =1{|]z] <1} x %(7 —1052% 4 4622" — 85825 + 7152°% — 221219), (20)

and the bandwidth 1.4(NT)~1/13 12
2. T'Spe: The SPJ Bias-corrected estimator given by (16).

3. CCE: The estimator by Harding et al. (2020), uses cross-section averages of dependent and

independent variables and their lags to approximate the factors.

4. PCA: The estimator by Chen (2021) estimates the factors by applying PCA to x;;. This esti-
mator also suffers from asymptotic bias. Hence, we report results for the SPJ bias-corrected

version.

To evaluate the finite sample performance of the above estimators, we report their biases and
RMSEs'? over 1000 replications for each pair of (N, T) with N,T = 30,50, 100. For our proposed
estimators we also report their size and power of the t-test. Notice that the variance estimation

defined in (15) involves the selection of an additional kernel function and bandwidth. While not

19We also consider the standard quantile regression estimator and the IVQR, estimator proposed by Galvao (2011).
Those estimation results are much worse than those of our proposed estimator and are available upon request.

"'To determine the number of factors, we apply the following criterion proposed in Bai and Ng (2002):

N
L . _ . 1 2 N+T .
7= argmin IC(m)= argmin In (NT ;:1 €3t (m)) +m—s In(min[N, T)),

0<m<rmaz 0<m<rmax

where é;:(m) are the mean regression residuals obtained by assuming the number of factors is m.

2Bandwidth selection is always an important problem in nonparametric estimation and remains an open problem
in quantile panel regression (see e.g. Galvao and Kato (2016)). Here we simply use the bandwidth 1.4(NT)~1/13
which satisfies Assumption 2. The simulation results confirm its satisfactory performance. We also conduct simulation
for various other choices of bandwidth, the results are generally satisfactory and are available upon request.

3When reporting the results, we multiply them by 100 for convenience.
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necessary, for simplicity, we employ the the same kernel function and bandwidth as those employed

in the estimation of parameters.

4.2 Simulation Results

To save space, we only report the simulation results for t(4) error distribution.'* The simulation
results for biases are presented in Table 1. Biases of the proposed T'S and T'Sp. estimators for
(1, B1, B2) are much smaller than those of the CCE and PC A estimators for all the quantile levels
and sample sizes. These results confirm that our proposed two-step estimation procedure is more
reliable and robust than the CCE estimation by Harding et al. (2020) and the PCA estimation by
Chen (2021), both of which require restrictive assumptions on the data generating process for the
independent variables.'® In particular, biases of TSy, are the smallest and almost negligible across
all quantiles and sample sizes, which confirms that the SPJ procedure can remove biases effectively
even in small samples with N, T = 30.

The RMSE results for all the estimators are reported in Table 2. Again, RMSEs of the pro-
posed T'S and T'Sp. are much smaller than those of CCE and PCA, suggesting that our proposed
estimators are likely to be more efficient. As N or T increases, RMSEs become smaller, which is in
line with Theorem 2 that the convergence rate of the estimator is v/ NT. The RMSEs are slightly
smaller at the median (7 = 0.5) than at the lower and upper quantiles, 7 = 0.2 and 0.8, which
is also consistent with the usual findings in quantile regression as there are more data points at
the median (e.g. Xu et al. (2021)). Notice that RMSEs of T'S;. are larger than those of T'S. The
inflated RMSEs of SPJ estimator has been also observed in many studies (e.g., Moon and Weidner
(2017), Galvao and Kato (2016)), which reflects the efficiency loss of the SPJ estimator due to the
use of only the half data sample for each half panel estimator.

The size and power values of our proposed bias-corrected estimator TSy, are summarised in
Table 3. We observe that the size values of the t-tests are generally close to the nominal 5%
significance level. Although the power values at the 0.2 and 0.8 quantiles are lower than those at
the median, they approach 1 quickly as sample size (either N or T') increases.

We also report the simulation results for error distributions of N(0,1) and x?(3) in Tables C1-
C6 of Appendix S2. The results are very similar to those reported here, which provides support
for the robust performance of the proposed estimators. In sum, we establish that the finite sample
performance of the proposed (bias-corrected) estimator is quite satisfactory in almost all cases

considered.

MWe provide the complete simulation results for N(0,1) and x?(3) in Appendix S2. Overall, the results are
qualitatively similar to those reported here.

5When such assumptions fail, both CCE and PCA estimators suffer from remaining endogeneity issue which may
lead to large biases. In static models, we can still obtain consistent estimates even if such assumptions fail (see Chen
et al. (2021a), Cui et al. (2021)). However, this does not apply to dynamic models, due to the correlation between
lagged dependent variable and unapproximated factors.
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Table 3: Size and Power of the SPJ Bias-Corrected Estimator with ¢(4) Error

Size Power
7=02 7=0.5 7=0.8 7T=02 7=0.5 7=0.8

P 0.062 0.056 0.046 0.872 0.930 0.864

T =230 51 0.044 0.054 0.048 0.292 0.406 0.240

B2 0.056 0.056 0.050 0.274 0.378 0.228

P 0.054 0.058 0.050 0.940 0.966 0.930

N =30 T =50 51 0.050 0.058 0.067 0.524 0.656 0.514
Ba 0.046 0.054 0.053 0.466 0.644 0.472

P 0.060 0.044 0.050 0.988 0.996 0.984

T =100 b1 0.054 0.062 0.048 0.906 0.958 0.900

Bo 0.040 0.048 0.044 0.854 0.952 0.848

P 0.060 0.054 0.056 0.898 0.940 0.936

T =230 b1 0.048 0.044 0.048 0.398 0.522 0.458

Ba 0.046 0.052 0.048 0.350 0.520 0.432

P 0.066 0.055 0.054 0.954 0.964 0.968

N =50 T =50 51 0.054 0.065 0.044 0.668 0.798 0.724
Ba 0.038 0.046 0.050 0.632 0.782 0.710

P 0.062 0.044 0.058 0.992 0.996 0.996

T =100 51 0.046 0.056 0.056 0.922 0.974 0.964

5o 0.046 0.054 0.044 0.922 0.966 0.962

P 0.055 0.050 0.040 0.940 0.955 0.935

T =30 51 0.047 0.043 0.045 0.660 0.755 0.690

B2 0.045 0.060 0.045 0.645 0.765 0.630

P 0.065 0.044 0.054 0.975 0.990 0.975

N =100 T =50 51 0.060 0.055 0.045 0.840 0.945 0.820
Ba 0.045 0.060 0.045 0.885 0.970 0.845

P 0.050 0.053 0.055 1.000 1.000 0.985

T =100 b1 0.055 0.060 0.045 0.970 0.990 0.970

Ba 0.045 0.045 0.053 0.980 0.995 0.935

Note: The results are based on the DGP specified in Section 4.1. The alternative for the
power test is 8 = 0 + 0.2.
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5 Empirical Application

During the past few years, the Brexit has provoked a renewed interest among researchers in studying
the effects of EU membership on trade. Such studies are important in helping the UK setting up a
new trade agreement with the EU. Although Brexit has been done, relevant research is still ongoing.

Historically, empirical findings regarding the effects of EU membership are quite heterogeneous.
Carrere (2006) applies a gravity panel data model with fixed effects to the bilateral trade data
for 130 countries over the period from 1962 to 1996, and documents that the EU membership can
increase intra-EU trade by more than 100%. Baier et al. (2008) report a smaller effect (around
60%), using data for 96 countries from 1960 to 2000, see also Ebell (2016) and Mayer et al. (2019)
for similar findings. Other studies find smaller impacts of the EU trade union. Hufbauer and Schott
(2009) find that the effect is estimated at 31% for data of all EU countries from 1976 to 2005, while
Eicher and Henn (2011) report an estimated effect of 37% using data for 177 countries from 1950
to 2000. Employing a similar dataset and applying the Bayesian Model Averaging to account for
model uncertainty, Eicher et al. (2012) find that the EU membership can boost the bilateral trade
flows by 51%.

When estimating a gravity model of trade flows, it is a common practice to control for multilat-
eral resistance, because bilateral trade flows depend on bilateral barriers as well as trade barriers
across all trading partners (Anderson and Van Wincoop (2003)). However, all of the above studies
include only the (country-time) fixed effects in the gravity model, which is likely to produce biased
and misleading results (the “gold-medal error” in the terminology of Baldwin and Taglioni (2006)),
given that multilateral resistance is unobserved, time-varying, heterogeneous and cross-sectionally
correlated (Mastromarco et al. (2016)). Thus, we follow the factor-based approach proposed by
Serlenga and Shin (2007, 2013), that can control for multilateral resistance through unobserved
time-varying common factors with heterogeneous loadings.

Moreover, it is also important to control dynamics in trade analysis. As argued in De Nardis
and Vicarelli (2003) (see also Olivero and Yotov (2012), Anderson and Yotov (2020)), on the one
hand, countries that trade a great deal with each other have a tendency to keep doing so as their
consumers have grown accustomed to the partner countries’ products (habit formation); on the
other hand, for countries trading extensively in the past, businesses have set up distribution and
service networks in their partner countries, which has led to entrance and exit barriers due to sunk
costs. Hence, bilateral trade data are generally highly persistent and past trading volume could
affect current trading. Ignoring this in empirical analysis may lead to incorrect inferences.

Finally, Egger and Nigai (2015) find that, in linear gravity models, observable trade costs
perform well mostly for country pairs with large bilateral trade flows but poorly for country pairs
with relatively small bilateral trade flows. This phenomenon suggests that the observable trade cost
measures could also affect the shape of bilateral trade besides the mean, and quantile regression is
more appropriate as it allows for a flexible mapping analysis of various factors affecting bilateral
trade (see also Baltagi and Egger (2016)).

Hence, to study the effects of EU membership on bilateral trade, we use the modelling strategy
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proposed in this paper and estimate the following dynamic gravity panel data model of trade flows

with common factors:

exporty = Bo + pexport; 11 + L19dpir + Bapopir + B3simiy
+pB4dis; + Bsbor; + Belan; + Breuro; + Pgeecit + e, (21)
eit = Y ft + €its

where export; is the logarithm of bilateral export (measured in millions of US dollars) for the
t-th country pair at time ¢, and export; ;1 is its value lagged by one time period. To avoid the
“silver medal mistake” (Baldwin and Taglioni (2006)), our model is estimated on uni-directional
trade instead of the log of the sum of exports and imports. In model (21), gdp;; is the sum of
the (logarithm) gross domestic products (GDP) of the two countries in the i-th country pair, and
pop;t is defined similarly for population. These two variables measure the (economic) size of each
country pair and are expected to have positive influence on bilateral trade due to their relationships
with production and demand (Martinez-Zarzoso et al. (2009)). sim; is a similarity (or relative

development) measure in terms of the size of the country pair and is constructed as sim; =

9dpiot\2 [ 99Pi,dt
In |1—( 9dpit ) ( 9dpit
within the i-th country pair. Its impact on bilateral trade is ambiguous since economic theory

)2|, where gdp; ot (gdpi at) is the GDP of the origin (destination) country

suggests that, on the one hand, the more countries differ the more they will trade with each other
(Yamarik and Ghosh (2005)), and on the other hand, countries with similar levels of development
will have similar preferences and thus be more alike that trade will occur (Linder (1961)). dis; is the
logarithm of the distance between the capital cities of the i-th country pair, and bor;, lan;, euro;,
eec;; are binary variables taking the value of one if both countries in the i-th country pair share a
border, a common language, the same currency (i.e. euro), and belong to the European Economic
Community, respectively. These variables measures geographical /cultural /policy factors that could
affect bilateral trade through lowering transportation/transaction costs and financial /cultural risks.
Except for dis;, all the above factors are expected to boost bilateral trade.'®

We employ the extended dataset analysed by Serlenga and Shin (2007) to cover the longer
time period 1960-2018 (59 years) for 380 country-pairs of uni-directional trade out of 14 EU coun-
tries (Austria, Belgium-Luxemburg, Denmark, Finland, France, Germany, Greece, Ireland, Italy,
Netherlands, Portugal, Spain, Sweden and UK) and 6 OECD countries (Australia, Canada, Japan,
Norway, Switzerland and the US).

We first estimate model (21) by the mean regression method in Moon and Weidner (2017). The
results are reported in the first column of Table 4. As could be seen, the estimated coefficient for
the dynamic lagged term is as high as 0.886'” and statistically significant, confirming the finding
in other research that the trade data is highly persistent (e.g. Olivero and Yotov (2012), Comunale
et al. (2021)). All the coefficients have the expected signs except for bor;, which is however not

10see Yamarik and Ghosh (2005) for the impacts of various variables on trade.

1"We also perform various panel unit root tests to check the stationarity of the data, and all the results reject the
null of nonstationarity.
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significant. Compared to the effect of gdp;:, the effect of pop; is much smaller and insignificant
(see also Serlenga and Shin (2007)). The estimated results further suggest that a 1% increase in
distance between two countries leads to an 8.7% decrease in bilateral trade, and there will be a
9.09%'® increase in trade if two countries speak the same language. Finally, the positive impact
of eecj; is higher than that of euro;:, which is consistent with findings in many existing researches,
see e.g. De Nardis and Vicarelli (2003), Mayer et al. (2019).

We then turn to the estimation results from our quantile regression (columns 2-4 of Table 4) that
enables the investigation of distributional effects. It is evident that the results are generally different
at the different quantile levels considered, which justifies the use of quantile analysis. Moreover, the
estimated coefficients have the expected signs at all three quantile levels. Compared with the value
from mean regression, the estimated lag coefficient is larger (over 0.9), which further confirms the
high persistence of trade data and highlights the importance of dynamic modelling. In line with our
expectation, the effects of both gdp and pop are significantly positive now, with the former smaller
and the latter higher than their mean regression counterparts. The effect of sim;; is positive but
only significant at medium and high quantile levels. This implies that in trade prosperous regimes
(medium and high quantile levels of trade), the more similar the two countries, the more they
are likely to trade (Thursby and Thursby (1987)). Similar to mean regression results, the effect
of distance is significantly negative, while the effect of bor; is significantly positive, in line with
our expectation that sharing border could possibly reduce the transportation costs, and thereby
boost bilateral trade. The effect of lan) is however negative and becomes insignificant now. This
insignificant finding might not be surprising considering that 75% of the countries in our sample
have over a half of their population who could speak English.'” Language related transaction costs
(e.g. translation costs) during trade may be relatively small. The estimated effects of euro; and
eec;; are both significantly positive and of similar values to their mean regression counterparts.

To more clearly illustrate the estimated effects, we plot their values across the different quantiles
in Figure 1. The dashed line is the estimated coefficient while the grey area gives the 95% confidence
band using the method by Powell (1991). At the 5% significance level, except for the effect of sim;;
at lower quantiles and lan; at all quantiles, all the other effects are significantly different from
zero. The effects of the lag term and dis; generally decrease in magnitude as the quantile increases,
suggesting that during the trade recession period (lower quantiles), the trade data is more persistent
and the adverse effect of dis is larger. These results are sensible considering that, first, bilateral
trade during recession period generally implies its necessity, thereby is unlikely to change and more
persistent; second, average transportation costs generally decrease as trading volume increases due

to the scale effect. It is interesting to see that the coefficients of gdp;; and bor; display a “V” shape,

= (€297 — 1) x 100%

19English is the first language for Australia, Canada, Ireland, UK, US. According to Wikipedia, over 86% of the
population in Denmark (86%), Netherlands (90%), Noway (90%) and Sweden (89%) could speak English; over 51%
of the population in Austria (73%), Belgium-Luxemburg (60%), Germany (56%), Greece (51%), Finland (70%) and

Switzerland (61%) could speak English. For the rest of the five countries, the English-speaking population is France
(39%), Italy (34%), Portugal (27%), Spain (22%), and Japan (15%).
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suggesting that during both trade recession and prosperous periods, trade is more likely to happen
between countries that have high GDP and are geographically close. These findings may reflect
that at trade recession and prosperous periods, only countries with high GDP have the ability
to meet partner country’s trade demand, and the border effect in reducing transportation costs is
more significant than at normal time. Most importantly, while the euro effect changes mildly across
quantiles,?’ there is a significant drop in the effect of eec;; as quantile increases. These results could
have the following policy implications: first, the benefit of adopting the same currency is generally
stable regardless of the trading/economic situation; second, the benefit of joining the European
economic community/free trade agreement may be larger/more significant during trade recession
periods.

Owing to dynamic quantile modelling, we are now able to distinguish the long-run effect of
eec;; on bilateral trade from its short-run effect at different economic regimes. This is an important
contribution to the vast literature on studying the benefits of being a EU member country on trade,
and the potential impact of Brexit on the UK economy. Our estimated short-run effect of eecy
on boosting bilateral trade is between 3.15% and 5.55% across different economic situations. Due
to the high persistence of trade data, the effect of eec;; is much larger in the long run, ranging
from 27.40% at high quantiles to 118.72% at lower quantiles, which covers most estimated effects in
the literature, see e.g. Carrere (2006), Mayer et al. (2019). Therefore, our results provide another
explanation for the heterogeneity of the estimated effect in the literature, and the effect of EU
membership on trade might be heterogeneous by nature under different economic situations. We
also report the effect of euro;; on trade. Similar to e.g. Bun and Klaassen (2007), Larch et al.
(2019), the estimated short-run effect ranges from 1.92% to 3.17%, which becomes much larger in
the long run, ranging between 26.41% and 58.83% (see e.g. Glick and Rose (2016)).

In columns 5-7 of Table 4, the estimation results using our proposed method but without
dynamics are also reported. As could be seen, most of the estimated results tend to be much higher
in magnitude than those from the dynamic model. Notably, the effect of pop;; becomes significantly
negative at all the three quantile levels, which is contrary to most existing empirical findings in the
literature (e.g. Kalirajan (2007)). Moreover, while theory suggests that sharing a common language
could possibly lower transaction costs, and thereby boost trading volume (Frankel et al. (1997)),
the estimated effect of lan; however tends to be negative, and significant at the median. Most
importantly, the estimated short-run effects of euro;; and eec;; become much larger. These results
highlight the importance of considering dynamics in modelling bilateral trade data. Ignoring the
dynamics will, on the one hand, produce less sensible estimation results, and on the other hand,
overestimate the effects from currency union and free trade agreement on bilateral trade.

For comparison purposes, we also report the results obtained from using the CCE-type ap-
proach by Harding et al. (2020) in columns 8-10 of Table 4. Since bor;, lan;, euro;, and eec;; are
binary variables with little time variation, we exclude them when approximating factors to avoid

multicollinearity issue (see also Serlenga and Shin (2007)). The estimated dynamic coefficient is

20Even though there is a drop at the median, the effect generally fluctuates between 0.025-0.03.
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smaller than previous estimations but still large and significant. Similar to the static case, the
estimated effect of gdp;; is higher than that from our proposed method, but the effect of pop;; is
significantly negative. Estimates for the coefficients of bor; and lan; are both insignificant although
high and switching sign across quantiles. Results for both euro;; and eec;; are significantly positive
and higher than those from our proposed method. In general, these results are less sensible and
we conjecture that this is due to some assumptions maintained for CCE estimation being possibly

violated.

22



"AOA1900dS0T ‘4 “yyy AQ POIOUDD OB S[OAS] % (T PUB %G ‘U4 89U} 1€ 90UROYIUSIS PUR ‘10110 pIepue)s oY) st sosorjuored

ut onfea o1, "(0g0g) ‘T 0 Suipiel ur pado[easp poyjeu o1} st HDD-HE) sorwreuip jnoyym ng poyjowr pasodord o st (219e)s)
Dd-gd pue ‘reded sy ur pesodord poylew o) ST DJ-YO "(LT0G) IOUPIOA\ PUR UOON Ul poyjewl Suisn Aq S)MNSSI UOTJeT)So

UOISS9I301 Uedll 10J SPUR)S UBdJ 'SIedL GG I9A0 sired A1)Unod OR¢ = A/ 10 ©Iep opel} [RISJR[I( A[TeaA JO S)SISUO0D 19seIReD 9], :9J0N

(60000)  (60000)  (600°0) (810°0)  (8100)  (L10°0) (800°0)  (9000)  (S00°0) (goo0) .
wxC80°0  4x€80°0  wxxl0T'0  wxkG0T0  4xxC0E0  wxsxITE0D  4xx080°0  wxk0FO0  4sk0G00  4xxGG0O'0
(#10°0)  (91000)  (¥10°0) (¢z0'0)  (920'0)  (820°0) (L0000)  (2000)  (900°0) (zoo0) .~
9L00  wil€00  wxx9900 wxk0TT0  wxk90C0  wxxI6T°0  wxxlT00  wxkbT00  4xxT€00  4uxCEO0
(o18'¢)  (68L%)  (6017) (061°0)  (681°0)  (S02°0) (6100) (61000  (S10°0) (L10°0) -
160 €PP0—  08€0— €60°0—  .91€0—  T0T0— 0100—  S100—  ¢20'0— xxL80°0
(90%)  (89¢6¢)  (9zeT) (L61°0)  (112°0)  (28T°0) (61000)  (gzo'0)  (210°0) (¥10°0) 104
0LT'C  6VST—  €L9°L— 801°0 €62°0 L08€°0 woxTL00 wxTC00  wx€200  800°0—
(cver)  (9ppT)  (0ge1) (zL00)  (690°0)  (LL0°0) (L000)  (800°0)  (L00°0) (€00°0) sip
wB6€0°9— 0T8T~ LTV0—  wOTTT— ws89T T— sl €T T— srl900— 4xk9L00— 4xsl800— sl 80°0—
(zeo0)  (g€0'0)  (2€0°0) (650'0)  (gg0'0)  (£50°0) (800°0)  (600°0)  (800°0) (9000) o
0000  +GG0°0— wxs8TT0—  4sxbFC 0~ 2uxlTH 0~ 2xCCG0—  +x€T00 48100  T10°0 +x920°0
(1e170)  (9¥1°0)  (191°0) (901°0)  (01T°0)  (250°0) (¥100)  (z1000)  (¥10°0) (Troo) .4
wx0LE0— w8TE0—  86T0—  wxs€FTT— s lOF T— wxs06CC—  5sx980°0  wusFEO0  4un TEO0 L0070
(670°0)  (000)  (2S0°0) (¥200)  (0L00)  (zsT0) (¥10°0)  (g1000)  (S10°0) (110°0) dp6
e OPT 0 kG0 L0 wxG6GT  x086'C  wxnl€9°E 4880°0  4x€90°0  4x0L00  wi6FT0
(010°0)  (6000)  (110°0) (#00°0)  (¥00'0)  (S00°0) (€00°0) 4
wxGPL0 k€940 wasTFL0 wix088°0  wsFT60  wux€E6'0  4xx988°0
80=4< g0=4 ¢0=4< 80=4< g0=4 ¢c0o=+4 80=4< g0=4< ¢c0=4< weoTy
CIOJOR (0] (omess) DJ-YO Dd-9d

BIR(J 9pel], [BIa)e[l{ JI0J S}NSIY UoIjewWIIsH :§ I[qel,

23



<
S 4
o
o~
o
S
o
8 4
o
o]
8 4
o
©
o -
S
sim dis bor
n
o
2 4
[
©
o ©0
S =
1
~
s
3 ?
o
[==]
S
S -
]
o~
o [=2]
S S
o
]
o
o = |
2 ?
o
—
-~
jajg
o~ 1
S
o
]
euro eec
o~
S
o < ©0
o - o -
S S
o
o
S
8 |
8 4 =]
s o
?
<
3
o
g 8
= S
[s2]
© S A
S o
T g
S
o~
[=e] o
S o
(=)
! T T T T T T T T T T T T
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Figure 1: Estimated Coefficients across Quantiles for Bilateral Trade Data

Note: The dashed line represents the estimated coefficient, and the grey area represents a kernel density based 95%
confidence band advanced by Powell (1991). The coefficients are plotted across quantiles, 7 = 0.1,0.2,...,0.9.
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6 Conclusion

In this paper, we develop a simple two-step procedure for estimating dynamic quantile panel data
models with unobserved common factors, without imposing any restrictions on the data generating
process for regressors. Specifically, we propose to use the iterative principal component (IPC)
analysis in the first step to obtain consistent factor estimation, and then in the second step, run the
augmented quantile regression by substituting these factors to obtain an estimator for the other
parameters of interest.

Under regularity conditions, we show that the estimator is v/NT consistent. Same as other
nonlinear panel data models with unobserved factors (see e.g. Chen et al. (2021c)), our estimator
suffers from asymptotic bias arising from the estimation of both factors and factor loadings. Due to
the existence of dynamic autocorrelation, our estimator also suffers from the Nickel bias, extending
the findings in linear mean regression models (Moon and Weidner (2017)). To correct the asymp-
totic bias, we propose to use the split panel jackknife procedure, and show that the bias-corrected
estimator follows a centered normal distribution asymptotically.

Monte Carlo simulations confirm that the finite sample performance of the proposed estimator
is quite satisfactory, especially when compared with the performance of other existing estimators.
We also demonstrate the usefulness of our approach with an application to a gravity model of
bilateral trade flows for 380 pairs of 14 EU countries and 6 OECD countries over 1960-2019. We
find that, on the one hand, the effect of being in the EU economic community could be larger/more
significant in recession periods, and on the other hand, the corresponding long-run effect ranges
from 27.40% at high quantiles to 118.72% at lower quantiles, covering most estimated effects in the
literature.

We conclude by noting a few avenues for future research. A natural extension is to also allow
the factors to be quantile dependent. Quantile-dependent factor models are becoming more and
more popular and attracting attention from both theoretical and empirical researchers. There are
already several influential papers in this area (see e.g. Chen et al. (2021b), Ando and Bai (2020))
and extending them to dynamic models can help improve our understanding of the dynamic nature
of many important variables. Another interesting direction of research is to develop a formal
procedure for testing whether the factors are quantile-varying, or more generally for cross-section
dependence test in quantile regression. Such tests are well developed in mean regression (see e.g.
Pesaran (2015), Bailey et al. (2016)), and recent developments in quantile factor models make such

an extension both interesting and possible.
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Appendix A Proof of the Main Results

Before proving the main theorems, we introduce some definitions and notations.

For any fixed 8 € ©,~; € A, where ® and ~; € A are some compact sets, define:

1 N T 1 N T
Snr(0, T, F) WZZZ . i, fi), Sir(0, T, F) TZZ/) i, Tr)

i=1 t=1 i=1 t=1
1 T
SiT(&’)’ivF):TZZ 6, vi, fi), Sir(6,7, F szt Yir ft)
t=1
where IV = [v1, ..., An], F' = [f1,..., fr], and

it — 0'zi —;
10, iy fi) = [r— KO0 gz i)

pit(0, vi, i) =7 — Wyt < O'zie — i f)(yir — O’ zir — Y. fr)

Further, for any random function f(-), define f(:) = Ef(-). f(-) = f(-) — f(:). Moreover, we let
f9(.) denote the j-th order derivative of f(-).

A.1 Proof of Theorem 1

The proof of consistency follows standard technique for M-estimator, see e.g. van de Geer (2000),

and we assume that Assumption 1 holds throughout this section.

Proof. First, define a ball Bs; = {0 € ©, v; € A: |0 — 6|1 + ||7io — Yioll1 < 0}, where § is a

small positive number. Then under Assumption (1) (vi), we have:

pit(0,%i, fi0) — it (60, Yio, fio)
=[(0—80), (§: — vi0)] - Elgit (0| Xit) Xt X,] - [(6 — 00), (i — vio)] + 0(6%)
> 5 [||6 — oy + [|19: — Yioll1]* + 0(6%) = (3¢ + 0(1)) - 67, (A1)

for any (é’ .%;)" on the boundary of Bs;, and the first equality follows from that 0pi: (0o, vio, fr0)/00 =
0 and 0pi(6o, ~io, fi0)/Ovio = 0 in the first equality. For any point outside of Bj;, that is
(CARAUNS Bc:i, we still have (8',5)) = 6/m(6, v.)' + (1 — §/m)(8), ~l,) on the boundary by
defining m = ||@ — 6o||1 + || — viol[1 > I, and therefore (A.1) holds.

Observe that p; is convex in (0’,~})’ for any given X;; = (2};, f{)’, and the fact the expectation

operator preserves convexity, we have

6/7’7'1,[3”(0, Yis .ft[)) + (1 - 5/m)ﬁzt(007 Yi0, .ft()) > ﬁit(é))ylﬁ .ft()) for all i;
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which together with (A.1) further implies that

5it(0, vi, fio) — pit(0, Yio, Fio) > m/8pi(0,%i, Fro) — pit(B0, Yio, fro)] > (3¢ + o(1)) - 6.

The fact ||§ — 8y, > J implies (6',5)) € By, for all i, then gives us that
| T
= NT > (0, HAi, fio)—pin(60, Yios fr0)] = (se40(1))-6%.
1=1 t=1
(A.2)

Second, by the multiplicative form of factor and factor loadings and the basic inequality
SNT(é,f,F) = SNT(é,fH/,FH_l/) < SNT(O(), Fo,FH_ll) = SNT(H(), FoH_ll,F), we also

have

Syr(0.TH', Fy)—Si1(80,To, Fy) =

Str(0,TH', Fy) — Siy1(60,To, Fy)
< [Snr(80, To, FH™Y) — S (00, To, FH V)] + [Sir (60, To, FH™) — Sk (60, To, Fy)]
— [Snr(8,T, F) = Sy7 (0,1, F)] — [Sir (6, TH', FH™') — Siyr(6,TH', Fy)]
— Syr(0,TH', Fy)+ Sir(60, To, Fp). (A.3)

It then follows from (A.2) and (A.3) that for any arbitrarily small 6 > 0,
P[[|6 — 6]l > 8] < Plsup Sy (6, T, F) =Sir(6, T, F)| >1/6(5+ o(1)) - 6°]
+ P[%;Ip IS0, 0, FH™Y) — S (0,1, Fy)| > 1/6(sc 4 0(1)) - 6]
PlISy(0,.TH', Fy) — Sy (80, To, Fo)| > 1/3(c+0(1)) - 6% (A.4)

The consistency then would follow if we could show that each of the three terms on the right
hand side of (A.4) is o(1).

According to Lemma 1 in Horowitz (1998), the first term (the smoothing error) on the right-
hand side of (A.4) is o(1) under Assumption 1 (vii) since

SUP|SNT(97 F) F) - S?VT(H) Fa F)| 5 h.

b

holds for any value of parameters and variables.
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The second term on the right-hand side of (A.4) is also o(1) since for some M > 0,

Soup |Sifk\7T(07 ]-‘7 F—Hil) - S}kVT(07I‘7 FO)‘

T
= sup 7 zzpzt 7o B ) = o 503 pul®, i fuo)

=1 t=1 i=1 t=1

T
1 AR |
<max sup \Tg pit(0, vi, H 1ft)_f§ pit(0, Yi, Fio)l
t=1

T
_ 1 I_1p
<7 Me\ D IH T o foll = 1)

where for the last inequality, we have used the fact that

1

vmin{N,T}

under Assumptions 1(ii)-(iv) as a result of Proposition A.1 in Bai (2009), and ¥ = sup., ¢ 4 [|vill is

I~ s o
=i H ol = Oy ).
t=1

bounded under Assumption 1(v).
Finally, note that for any € > 0,

P[|Syr(6,TH', Fy) — Sir(60, To, Fy)| > €]

< maxP| sup

T LT
Z 0.7, fro) — TZﬁit(em Yio, fro)l > €]

'ﬂ 3| =

t 0cO,v;,cA — t=1
N T
< Z sup T Z 7'71) .ftO szt 00a Y0, ftO)’ > 6] (A5)
i—1 0cO,v,cA =1 t 1

To show that the third term on the right-hand side of (A.4) is o(1), we therefore only need to show

T
1 B 1
P[ sup !* § pit(0,7i, fio) — T E pit(60, Yio, fro)| > €] = o(— (A.6)

06@,%6./4 —1 —1 N

Write 9; = (6',7]) and B; = (©’, A’)'. Since B; is compact, there exist a finite, say, R small
open balls, denoted 5’ ird = , R with center 193 and Hﬂj 9¥|| > n for any j # k, such that

B; € UJL:1 Bf” Therefore, any 191 must belong to some Bn,i and we further denote its corresponding
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center as ¥;. Then,

T T
1
96(3171713 A T; pit(0,7i, fro) — g (6o, vio, fro)
1< 1 <
sup | = S Die(9%) = Dir(95)] + = S [Dir(9:) — Dig(97) — (Di(93) — Din(99)]]
966;5AT;[ +(97) ¢(97)] T;[ ¢(94) (97) — (Dit(94) (97))]

< s D) - DU S D)

— Dt (99) — (D (9%) — Din(92))],
e —otl<n L 4=

where D (9;) = pi(0,7i, fio) —pit(6o, Yio, fro) and Diy(9:) = E[pit(0,7i, fio) — pit(Oo, Yio, fro)]-
Further, by the property of check function that for any two different 9¢ and 9?

|Dit(97) — Dig(92)] < M|[9¢ — 9°|[]| X,

and under Assumption 1 (ii), E||X;| < M, we therefore have

sup

T
— it (09) — Dy (9% D;y(99) — Dy (92))]
|h9?—19$\|<nTZ it ( it(97) — (Dit(97) t(

T
M Z 1Xe |l = | Xt ) + 2M. (A7)

As a result,

T
1
sup P ’yAa fO = /3 907 Yi0, ftO > €
Moo TZ (6 T thzl (6 o Fuo)l = ¢

T
<SP (| YD) - Do)
j=1

>¢€/3| + P |Mn

T

1

T > (I1Xael — Bl Xal)| > €/3] + P[2Mn > ¢/3]
t=1

(A.8)
It is easily seen that the last term in (A.8) would be zero if n < ¢/6 M
For the first term, by the property of the check function and Assumption 1 (ii), we have
E|D;:(9;)[*1° < M for any 9; € B;, then we have

4
<M,

1 o N
E 77 ;[Ditwg) — Diy(97)]

(A.9)

under the a-mixing condition in Assumption 1(i) and Theorem 3 in Yoshihara (1978). Further, by
the Markov’s inequality,

T
P ;;[Dit(ﬁg) - Dit(ﬂg)] >e€/3| = Op(%). (A.10)
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We can show same result for the second term on the right hand side of (A.8) in a similar way, and

we thus have shown (A.6) according to Assumption 1(vii), which completes the proof.

A.2 Proof of Theorem 2

Proof. Collecting results (5.10), (S.13), (S.15) in Lemma 4, (S.44) in Lemma 7, (S.57) in Lemma
8, (5.68) in Lemma 9, (S.75) in Lemma 10 and (S.79)-(S.82) in Lemma 11, we have

N7 (6 — 69)

Ti\f:

=1t

N T N

T ’
l( Wi — L ZZAtN FO FO )*17?”2’, (65" — ém) ! ZAtN(Fan Fan)il’)’me‘t
it Q NTl.ltl N 10 <1t \Y0 NTllt:1 N 10 =17

‘,_l>

M%

[y

%\H =

L)+ 010 - 60l

1
(bi,nT + b NT + b3 NT) + N(Cl,NT + coNT) + Op(T

(A.11)

where Ay is defined in (11) and

N T
- (NT Z Z Elgit (0| X )wir FioTL7 frol,

N T T
1
bont = 5o > D D Eleir(01Xi)wie figTL7! fao(r — L(pis < 0))]
=1 t=1 s<t
N T
~ T(l—7) 1
br,3,NT = ( 5 )NTZZE[ftoH kL frol

, T'pm rm'rm
AR (%) 1(‘I’tk+2®tk)(%) i
=1 t=1

DN =
=2
~
WE
Mﬂ
=

Thus we can write:

VNT(6 — 6)
1 L& ' pm
= AL ®NrVNT(0™ — ) + At —— Jwiy — Ay (=00 )~ 1yme,
NT*NT ( 0) NTW;; it t tN( N ) Yi0 t)
[N [T
+ ?AngbNTJr NA]—VchNTJrop(l), (A.12)

1
1 N T eIy —1 /
where ®nT = 37D i D Aen (O S) T Y0 2l byt = binT + bant + b3 N, and ent =
¢ NT + CoNT-




Further according to Theorem 4.3 of Moon and Weidner (2017),

N T
A _ 1 . IN [T
VNT(0™ — 6y') = DN%’ \/ﬁ ; ;zz{teit + ?(al,NT + agyNT) + NGS,NT + Op(1)7
(A.13)
where ag N7 = [ag,1, ..., aqpt1) ¢ =1,2,3, and
N T T
1 FF
g LNT = > ElzsFiol 0) ' faoeis)] (A.14)
i=1 t=1 s<t
e L LI LS R AT ZTZE ) (A1)
a = — 6 .
B2NT = 2 T T N T2 it)

al F/Fy _, T'TY

T)l(N

1 B
s NT = 3 ) Zi g ME QFD ) igS (A.16)
1

i=

with 2; , z; 5 and £ defined in Theorem 221

Moreover, as shown in Lemma 3 (k) Horowitz (1998) and by Assumption 2 (iv),

N T
Wy = (7 — (st < 0))awse + 0p(1) (A.17)
=T 2

MH

D

=11

3l
N~

Il
—

As a results, (A.12) could be further written as

VNT(0 — 6y)
1 LZ rWrm
= Z Z A]_V:’lf({)NTDX/é“E;teit + (7 = Wi < 0))wir — An (=) vfiear)
VNT =15
_ _ N
+ ANk {‘I’NTDNlT \/ ?(GI,NT +az NT) + Vv as NT \/ bNT +4/ CNT} + 0p(1

(A.18)

Similar to the proof of Theorem 4.1 in Ferndndez-Val and Weidner (2016), the desired results
follows by invoking a central limit theorem for martingale difference sequences.
|

Proof of Theorem 3:

Proof. From the expansion (A.18), for any estimator é(js), j,s =0,1,2 and at least one of j or s

2! Therefore, if we assume time homogeneity, this term would disappear, see also Theorem 3 in Bai (2009).
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must be 0, we have

VNT(8(;5) — o)
91(j>0)91(s>0) I\m/I‘m B
= \/ﬁ Z Z AN 'T&((I’N /EDN. Ts telt + (T - (/’L’Lt < 0>)wlt - At-/\f ( N ) 710611‘/)

1€EN; s€T;
_ B 21(s>0) Vv 21(j >0)T 21(s>0 21(3>0)T
+AV T {(I)NstDN]l-TS [\/ — (a7 FaznT) + \/ — N T\ +/ CNTS}

+ op(1),

As Nj, Ts — oo and under Assumptions 1(iii), 2(v), 3 and Theorem 2, we have

lim Ay, = A,th Dy,T. = <I>,th Dy;7, = D,th Ay, = Ay,

N, Ts—o00 5, Ts—00 5y Ts—r00 5y Ts—r00

I‘6” ry
lim =3 lim a,n =1,2,3, lim by =b  lim ecn7 =c¢c
Nizoo N T p Tamsoo TN T D= 55 e PN T =00 6 Taoe N T ©

and same as Fernandez-Val and Weidner (2016),

6,00) A~ {®D " [r(as +az) + 7 'as] + b+ 71} 11111
001 1{<I>D L[2m(ar + az2) + 77 tag] + 2mb+ 77t} | (1 2 0 1 1
O = 0z| 2 MN| |A{®D ! [21(as + as) + 7 'as] + 2rb+ 7 e} |, [1 0 2 1 1|eA'vaT)
6,10) 1{<I>D Un(ar +az) + 27 tas] + b+ 27 te}| [1 1 1 2 0
é(go) -1 {<I>D 1 [ﬂ' a; +as)+21~ 0,3} +7Tb+27r_1c} 1 1 1 0 2
The results in (17) then follows by noticing that 8, — 8y = [3,—0.5, —0.5, —0.5, —0.5]© and
using the property of multivariate normal distribution. |
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